Designed delightful microinteractions for UI components.
These included button presses, hover animations, empty states, and subtle feedback. They made the app feel more dynamic and polished.
This is a fictional project created for demonstration purposes. Cover Refer from here
H1 Heading (Article Title)
H2 Heading (Section Title)
H3 Heading (Subsection Title)
H4 Heading
H5 Heading
H6 Heading
Basic Text Styles
Bold Text
Italic Text
Strikethrough
Inline code
π Blockquotes & Lists
This is a blockquote.
You can use > for line breaks.
- Unordered list item 1
- Unordered list item 2
- Ordered list item one
- Ordered list item two
π» Code
Python Example
def greet(name):
return f"Hello, {name}!"
print(greet("World"))
JavaScript Example
function greet(name) {
return `Hello, ${name}!`;
}
console.log(greet("World"));
Setting Different Coding Styles
Refer to Hugo Doc
1package main
2
3import "fmt"
4
5func main() {
6 for i := 0; i < 3; i++ {
7 fmt.Println("Value of i:", i)
8 }
9}
Inline formula: $( a^2 + b^2 = c^2 )$
Simple LaTeX equation:
\[
x^2 + y^2 = z^2
\]
Complex LaTeX equation:
\[
\begin{aligned}
KL(\hat{y} || y) &= \sum_{c=1}^{M}\hat{y}_c \log{\frac{\hat{y}_c}{y_c}} \\
JS(\hat{y} || y) &= \frac{1}{2}(KL(y||\frac{y+\hat{y}}{2}) + KL(\hat{y}||\frac{y+\hat{y}}{2}))
\end{aligned}
\]
Using $:
$$\int_{-\infty}^{\infty} e^{-x^2} dx$$.
Using $$:
$$
\int_{0}^{1} x^2 ,dx = \frac{1}{3}
$$
π§© Table
| Project Name |
Type |
Status |
| Portfolio UI |
Web Design |
β
Done |
| App Redesign |
Mobile |
π In Progress |
π Links and Images
Visit my website

Shot by Yu Shin Liou
This is a sentence with a footnote.